
International Journal of Heat and Fluid Flow 29 (2008) 1543–1557
Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier .com/locate / i jhf f
Growth of turbulent spots in high-speed boundary layers on a flat plate q

Andreas Jocksch *, Leonhard Kleiser
Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich, Switzerland
a r t i c l e i n f o

Article history:
Received 11 November 2007
Received in revised form 18 July 2008
Accepted 3 August 2008
Available online 8 October 2008

Keywords:
Turbulent spots
Transition to turbulence
Compressible boundary layer
Supersonic flow
0142-727X/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.ijheatfluidflow.2008.08.008

q This paper was originally presented at the In
Turbulence and Shear Flow Phenomena held in Mun
and later expanded, revised, and submitted; See Volu

* Corresponding author.
E-mail address: jocksch@ifd.mavt.ethz.ch (A. Jocks
a b s t r a c t

We investigate the development of isolated turbulent spots in supersonic flat plate boundary layers by
direct numerical simulations. The spot structure is analysed and mean velocity profiles and Reynolds
stresses are determined by averaging, for one flow parameter set, over an ensemble of simulations.
Besides the Mach number also the Reynolds number affects the spot growth. Strong wall cooling leads
to elongated turbulent spots. The asymptotic spreading of linear instabilities is investigated and its rela-
tion to the spot growth is discussed. The near-field reveals waves propagating away from the spots.
Within the boundary layer they appear as distinct semi-circular patterns.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The transition from disturbed laminar to fully turbulent flow
can proceed along various paths. For boundary layers, the classical
path is characterised by growing linear eigenmodes known as
Tollmien–Schlichting waves in incompressible flow. In a later stage
of transition turbulent spots appear in the otherwise ordered sur-
rounding flow. These spots grow and subsequently merge until
fully turbulent flow is developed. For an overview about transition
including different ways of turbulent spot formation see Schmid
and Henningson (2001).

In order to understand their spreading mechanism, the growth
of isolated turbulent spots was investigated in a number of exper-
imental studies as reviewed by Riley and Gad-el-Hak (1985). For
this purpose, strong concentrated disturbances were imposed on
the laminar flow which trigger localised transition. Such local tur-
bulent spots show a number of universal properties throughout all
investigations. They are indicated in the visualisation of iso-con-
tours of the wall-normal vorticity xz (Fig. 1) of our simulation A1
which will be introduced later. The most noticeable property is
an arrowhead-like shape where the tip of the spot is lifted away
from the wall. At the tail a calmed region with streamwise-ori-
ented streaks is established. Turbulent fluctuations are present
mainly within the core region of the spot whereas in the calmed
region they are suppressed.
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Early direct numerical simulations (DNS) of turbulent spots in
Poiseuille and boundary layer flow were performed by Henningson
et al. (1987). Flow-type specific characteristic properties of the
spot structure observed experimentally were confirmed, such as
the overhanging front part of the boundary layer spot. The DNS
of Singer (1996) (also Singer and Joslin, 1994) gave a more detailed
picture of the turbulent spot in the boundary layer. The calmed re-
gion was clearly identified. It was also observed that a log-law
velocity profile was beginning to establish. Further simulations
were performed for turbulent spots in various shear flows, e.g.,
plane Couette flow (Lundbladh and Johansson, 1991) and suction
boundary layers (Levin and Henningson, 2007).

The evolution of an initial disturbance in laminar flow to an
incipient spot has been widely studied (for early work see Riley
and Gad-el-Hak (1985)). We mention here the work of Singer
and Joslin (1994) who observed that a primary hairpin vortex
developed from their initial disturbance generated by localised
blowing through the wall. Additional hairpin vortices form beside
the primary vortex and lead to a turbulent spot. Breuer and Lan-
dahl (1990) performed a DNS of incipient spot formation in bound-
ary layer flow. The initial disturbance was realised by a vortex pair,
which was already the subject of earlier investigations, mimicking
the effect of an oscillating membrane. This (or similar) vortex pair
disturbances have become popular for triggering turbulent spots
(Lundbladh and Johansson, 1991; Levin and Henningson, 2007)
and are also used in our work.

The occurrence of waves in the near-field of turbulent spots has
been a subject of vivid discussions since the experimental investi-
gation of Wygnanski et al. (1979) who found oblique waves on the
spot wingtips. The waves were suggested to participate in a local
laminar-turbulent breakdown process. Waves at the tail of the
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Fig. 1. Visualisations of turbulent spot with typical spot properties: (front, side and
top view). (1) Wingtip with lateral overhang, (2) downstream overhang, (3)
turbulent core and (4) calmed region with streaks. Thick dashes at the edges of the
side view indicate the U(z) = 0.99U1 laminar boundary layer edge. (Visualisation by
iso-surfaces of xz = ±0.1, case A1, single sample, t = 228.)
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spot which appeared to passively follow the spot were observed in
the experiment by Chambers and Thomas (1983). Glezer et al.
(1989) argued from their measurements that waves can play
different roles depending on the stability properties of the bound-
ary layer. They can destabilise the surrounding flow or follow only
passively. Singer (1996) looked for the presence of waves around
his spots but found that his Reynolds number was too low and
the integration time too short for the possible appearance of this
phenomenon and for a comparison with the aforementioned
experiments. For plane Poiseuille flow, waves on the wingtips were
found in visualisations of Carlson et al. (1982). This observation
was confirmed, e.g., in the simulations of boundary layer and
Poiseuille flow turbulent spots of Henningson et al. (1987) which
showed waves on the wingtips of the spot only in Poiseuille flow.
A further numerical study of the wave phenomenon was per-
formed by Henningson (1989). He investigated how these waves
at the wingtips contribute to the growth of Poiseuille flow spots.

It is well known that for wave-induced transition scenarios the
linear stability properties of the boundary layer are crucial. The
spreading of turbulent spots was associated with the spreading
of small disturbances in the context of front propagation (see the
review of van Saarlos (2003)). These small disturbances, character-
ised by their dispersion relation obtained from linear stability the-
ory, are preferably considered in the asymptotic limit of time
t ?1 using the saddle-point method. How this spreading is re-
lated to the turbulent spot was discussed for Couette and Poiseuille
flow. For Blasius boundary layer flow, the spreading of small dis-
turbances was investigated in the limit t ?1 already by Gaster
(1968).

The growth of small disturbances at high Mach numbers has
characteristics different from the incompressible case (Mack,
1984). Some important differences are as follows. Starting around
the transonic regime, for adiabatic boundary layers the least stable
mode is an oblique first-mode wave (corresponding to the
Tollmien–Schlichting wave in incompressible flow). Additional
unstable two-dimensional higher modes appear for freestream
Mach numbers M > 2.2. At still higher Mach numbers higher modes
have a larger growth rate than the first one. Cooling of the wall sta-
bilises the first mode but destabilises higher ones (Mack, 1984). As
a consequence of multiple unstable modes at high Mach numbers,
a multitude of classical wave-induced transition scenarios appear
possible. Which ones are dominant at different Mach numbers
was investigated by the secondary stability analysis of Ng and
Erlebacher (1992), among others. One basic scenario is the so-
called oblique breakdown characterised by the growth of a pair
of oblique first-mode instabilities. This transition mechanism was
investigated by means of DNS by Fasel et al. (1993) and Sandham
et al. (1995). Alternatively, two-dimensional primary second-mode
perturbations with three-dimensional secondary instabilities
might dominate the process. A DNS of the subharmonic second-
ary-instability type was performed by Adams and Kleiser (1996)
and a large-eddy simulation (LES) of this case by Stolz et al. (2007).

The topic of hypersonic transition on cones was reviewed by
Schneider (2004) who also reproduced a visualisation of a turbu-
lent spot including noise radiation from the turbulent region.
Fischer (1972) discussed the influence of the Mach number on
the spreading of turbulent disturbances based on a comprehen-
sive collection of experimental results, not only from turbulent
spots but also from other spreading disturbances like those be-
hind roughness trips. Despite a large scatter of the data a clear
decrease of the lateral spreading with increasing Mach number
was found. Measurements on naturally occurring turbulent spots
in subsonic and supersonic boundary layers along flat plates were
performed by Clark et al. (1994), de Lange et al. (1998) and Mee
(2002). They detected turbulent spots and their growth from heat
transfer measurements at the wall. It appeared that a mechanism
of spot generation and growth took place which was similar to
the incompressible case. The lateral spreading was reduced for
higher Mach numbers. Recently, DNS of spot growth in super-
sonic boundary layers at M = 2, 4 and 6 were performed by Krish-
nan and Sandham (2006a,b). Their turbulent spots showed the
typical structures known from the incompressible case. The re-
duced lateral spot growth with increasing Mach number was con-
firmed. At M = 6 additional spanwise structures were observed.
The aspects of spot growth mechanisms, spot merging (Krishnan
and Sandham, 2006b) and the interference with a shock-induced
separation bubble (Krishnan and Sandham, 2007) were also
investigated.

In the present contribution, we study the growth of isolated tur-
bulent spots in laminar zero pressure gradient boundary layers on
a flat plate at M = 1.1 and 5 by DNS. After briefly describing the
numerical approach we present results for transonic boundary
layer spots. The spot structure is discussed and for one parameter
set turbulence statistics are evaluated based on ensemble-averag-
ing 40 separate simulations with slightly varying initial conditions.
Further topics of consideration are the Mach and Reynolds number
influence and the effect of wall cooling. For M = 5 the spreading of
turbulent spots is put in relation to the growth of linear distur-
bances in the limit t ?1. The near-field of the spots is investi-
gated with respect to the occurrence of waves. Also for M = 5 one
dominant wave pattern is analysed with respect to basic types of
eigenmodes of the inviscid linear stability theory.

2. Simulation method

We consider supersonic isothermal-wall boundary layers on a
flat plate. The Navier–Stokes equations for a perfect gas are numer-
ically solved in a rectangular box. The ratio of specific heats
amounts to c = 1.4 and a constant Prandtl number of Pr = 0.72 is
chosen. Sutherland’s law determines the viscosity with the con-
stant Su ¼ Su�=T�1 ¼ 110 K=293 K where T�1 is the freestream tem-
perature (*denotes dimensional values). At the outer edge of the
computational domain non-reflecting boundary conditions are ap-
plied. Dirichlet boundary conditions with sponge zones are used at
the inflow and outflow boundaries. In the spanwise direction peri-
odicity is applied.
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To specify the initial and boundary conditions a boundary layer
similarity solution according to the Howarth–Dorodnitsyn transfor-
mation (Stewartson, 1964) is used. At moderate Reynolds numbers,
appreciable differences exist between the boundary layer approxi-
mation and the Navier–Stokes solution which are on the order of
the small physical disturbances present in our simulations. There-
fore, in our simulations a forcing term is applied to the Navier–
Stokes equations which maintains the laminar boundary layer solu-
tion when no disturbances are present. Our computational domain
employs an optional frame of reference moving downstream at con-
stant speed. At the starting time it is at rest with respect to the wall.
When the disturbance has travelled to the middle of the box the ref-
erence frame velocity is set to the approximate spot centre velocity.
This allows to shorten considerably the streamwise box length.

A compact finite-difference scheme of third-order at the bound-
ary points, fourth-order at the points adjacent to the boundary and
sixth-order in the interior for first- and second-derivative opera-
tors (Lele, 1992) is used for spatial discretisation and a grid stretch-
ing is applied in the wall-normal direction. Either a low-storage
third-order Runge–Kutta method (Williamson, 1980) or the classi-
cal fourth-order Runge–Kutta method are employed for time
marching. The convective terms are expressed in skew-symmetric
form following Honein and Moin (2004) to enhance numerical sta-
bility. The diffusive terms are evaluated using second-derivative
operators to damp gridpoint-to-gridpoint oscillations (see e.g.
Sandham et al. (2002)).

As initial disturbance a vortex pair is superimposed on the lam-
inar boundary layer solution. We adopt the disturbance stream-
function definition used by Breuer and Landahl (1990) for
triggering localised disturbances in incompressible flat plate
boundary layer flow,

W ¼ � � ðx=lxÞðy=lyÞðz=lzÞ3 e�ðx=lxÞ2�ðy=lyÞ2�ðz=lzÞ2 ð1aÞ
ðquÞ0 ¼ 0; ðqvÞ0 ¼ Wy; ðqwÞ0 ¼ �Wz ð1bÞ

where [(qu)0, (qv)0, (qw)0] is the disturbance of the momentum and q
the density. Here (x,y,z) and (u,v ,w) denote the coordinates (fixed to
the wall) and velocities, respectively, in the streamwise, spanwise
and wall-normal directions. The dimensions of the vortex pair are
lx = 10/3, ly = 4, lz = 4/5 and the strength is � = 1 for all simulations.
Lengths are normalised throughout this paper with the displace-
ment thickness d�1 at the triggering position of the spot. Velocity,
density, temperature, and kinematic viscosity are normalised with
the freestream values U�1, q�1, T�1, m�1 respectively, the pressure p
with q�1U�1

2 and time t with d�1=U�1. Accordingly, the Reynolds num-
ber is defined as Re � Red11 ¼ U�1d�1=m�1. Other Reynolds numbers
are R ¼ ðU�1x�lp=m�1Þ

1=2, Reh ¼ U�1d�2=m�1 and Red2 ¼ q�1U�1d�2=ðq�wm�wÞ,
where d�2, x�lp;q

�
w and m�w are the momentum thickness, the distance

from the leading edge of the plate, the density and viscosity at the
wall, respectively.

3. Spot development

We begin with considering a transonic boundary layer transi-
tion at M = 1.1 and Re ¼ Red11 ¼ 800, denoted as case A1. The wall
temperature of our simulations is that of the adiabatic laminar
Table 1
Flow and simulation parameters for the five cases investigated (Re ¼ Red11)

M R Red11 Reh Red2 Tw/T1

A1 1.1 362.0 800 237 205 1.20
A2 1.1 678.8 1500 444 385 1.20
B1 5.0 305.6 3000 163 56 5.19
B2 5.0 509.4 5000 271 93 5.19
C 5.0 699.6 3000 429 429 1
boundary layer solution unless mentioned otherwise. The parame-
ters M, Reynolds numbers and wall-to-freestream temperature Tw/
T1 are given in Table 1. Furthermore, the extent of the computa-
tional domain Lx, Ly, Lz in the streamwise, spanwise and wall-nor-
mal directions and the corresponding number of grid points Nx,
Ny, Nz are included. (The third-order temporal discretisation was
used for this case and the fourth-order one for all following cases.)

Because of the lack of any temporal or spatial homogeneity, sta-
tistical properties are determined by averaging over an ensemble
of 40 different realisations of the spot development. In experimen-
tal work ensemble-averaging has been applied similarly, e.g., for
the investigation of substructures in the spot (Sankaran et al.,
1988) and other detailed statistical analysis (Schröder and Kom-
penhans, 2004). In order to provide different realisations of the
spots, we trigger them with additional small random disturbances
(un,vn,wn) superimposed at t = 0 on the vortex pair disturbing the
laminar boundary layer solution. The random homogeneous isotro-
pic noise has an energy spectrum with a Fourier amplitude distri-
bution according to

jûnj ¼ jv̂nj ¼ jŵnj ¼
1

4000
jkj
kp

� �8

exp �2
jkj
kp

� �2
" #

ð2Þ

(k = wavenumber, kp = 4.2). The phases of the complex Fourier
modes were chosen randomly (distributed uniformly over [0,2p))
where the set of all random phases is independent for each simula-
tion. This homogeneous noise is modulated with the shape of the
vortex pair disturbance, resulting in

½ðquÞ0ðun þ 1Þ; ðqvÞ0ðvn þ 1Þ; ðqwÞ0ðwn þ 1Þ� ð3Þ

as the actual disturbance imposed on the initial flow field. This way
the noise only affects the main disturbance (but not the surround-
ing laminar flow) and is made inhomogeneous, realising especially
the zero velocity at the wall. The slight spanwise asymmetry of the
spots generated by this method is exploited to double the statistical
sample size by averaging over spanwise mirror positions across the
plane y = 0.

Breuer and Landahl (1990) investigated how strong initial dis-
turbances develop as opposed to weak ones. We chose an initial
disturbance strong enough to cause a fast development into a tur-
bulent spot in the sense that the breakdown to turbulence occurs
before disturbances have extended significantly over the whole
computational domain. If the initial disturbance is too weak this
may lead to very long elongated structures before the flow be-
comes turbulent. Overall, the development of the initial distur-
bance in the compressible boundary layers investigated is similar
to the incompressible case of Breuer and Landahl (1990).

Fig. 2 shows the development of early structures by iso-con-
tours of the second invariant k2 = �10�2 of the velocity gradient
tensor (vortex detection criterion) of a single realisation for case
A1. Comparing the visualisations of k2 at different times gives in-
sight into the disturbance development. Singer and Joslin (1994)
and Krishnan and Sandham (2006a) found a primary hairpin vortex
arising immediately after triggering by localised blowing through
the wall. Afterwards further neighbouring hairpin vortices devel-
oped. We do not observe this sole hairpin vortex and subsequent
Lx Ly/2 Lz Nx Ny Nz

175 37.5 37.5 767 384 192
175 37.5 37.5 1580 385 385
250 54 37.5 1116 294 294
210 51 37.5 1900 525 595
210 37.5 37.5 988 207 299
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development, which can be attributed to the different triggering
procedure. Rather, the first hairpin is accompanied by further
structures at its tail forming a diamond. These interact and form
more complex topologies at the side vertices while at the tip of
the hairpin also secondary hairpins appear.

Some time after the development of these early structures a
localised turbulent region is established. Fig. 3 shows iso-con-
tours of k2 = �10�5 for this development. (The same iso-value is
chosen for all visualisations except Fig. 2.) At the later stage
t � 170, a vortex system at the tip appears like in Singer and Jos-
lin (1994). The developed turbulent spot at t = 228 shows typical
universal properties known from previous investigations. The
plan-view shape is arrowhead-like and there is a downstream
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later figures mark the sponge region.
overhang region (cf. Fig. 1). At the tail region elongated stream-
wise structures, so-called streaks, dominate which are pro-
nounced in the xz visualisation. The turbulent spot grows out
of the laminar boundary layer, which appears plausible if the tur-
bulent part behaves similarly to a turbulent boundary layer which
is known to grow faster than a laminar one. The semi-circular
structures appearing in the near-field of the turbulent spot at
t = 59 (Fig. 3) and again in the developed stage (t = 228) will be
discussed later. (Spanwise structures seen at the inflow and out-
flow developing at the final stage t = 228 are artefacts due to the
limited domain size.)

It is of obvious interest to consider statistical quantities in the
spot region and to compare these with known turbulence proper-
t 112

x
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x
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elocity magnitude. Case A1, single sample, side and top view. Grey bars in this and
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ties, using the ensemble-averaging mentioned earlier. The average
of a quantity q is denoted as �q, its Favre-average as ~q ¼ qq=�q. Fig. 4
shows profiles of the Favre-averaged velocity components ð~u; ~v; ~wÞ
in planes normal to the spanwise direction at y = 0, y = 7.5 and
y = 15, respectively. Profiles of the Favre-averaged temperature ~T
and the inverse averaged density 1=�q are also shown, which largely
coincide due to the almost constant pressure within the domain.
Deviations from the laminar profiles within the spot region are
clearly visible. At the tail of the spot smooth velocity profiles with
gradients at the wall steeper than the laminar ones are present
indicating the calmed region. Velocity and temperature deviations
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In order to visualise the crossflow, sectional streamlines and
velocity vectors ð~v; ~wÞ of the spanwise and wall-normal compo-
nents in planes x = const. are shown in Fig. 6. The wall-normal
velocity above the core of the turbulent region is significantly lar-
ger than for the laminar boundary layer (see Fig. 6 for x = 150). The
freestream is displaced outward by the central part of the spot. The
turbulent spot is laterally embedded by sectional streamlines. In
the upstream and downstream parts of the spot (x = 120, x = 180,
respectively) the wall-normal velocity component is partially di-
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rected toward the wall. These observations are consistent with the
principal spot structure derived from investigations of turbulent
spots in incompressible boundary layer flow like the early ones ref-
erenced in Riley and Gad-el-Hak (1985).

Statistics of disturbances are considered next. The streamwise
Reynolds normal stress �q gu00u00 and the Reynolds shear stress
��q gu00w00 are depicted as profiles in Fig. 7 and by section planes in
Fig. 8. The shape of the two Reynolds stress distributions looks
quite similar. Strong fluctuations are visible in the core of the spot
and at the lateral tails, whereas in the region of the tip vortex sys-
tem and the tail the fluctuations are rather small.

We note that the distribution of the Reynolds stresses within
the turbulent spot (Figs. 7 and 8) compared with the structures
of a single realisation (Fig. 3) shows that in the region of dominant
turbulent fluctuations hairpin structures are present similarly as in
fully developed turbulent boundary layers. Hairpin structures are
also present at the tip of the spot where fluctuations are moderate.
This we interpret as follows. While in the interior of the spot the
flow is close to being fully turbulent, at the tip it is rather early
transitional. The hairpin structures occur more sparsely and turbu-
lent motions are only present in a limited layer which does not ex-
tend down to the wall (lifted tip).

The local distribution of the skin-friction coefficient cf is shown
in Fig. 9. It becomes visible that the cf distribution is streaky not
only in the tail region but in the whole spot. The picture is similar
to the ones given by deviations of streamwise velocity and temper-
ature (Fig. 5) in a near-wall plane. Other ensemble-averaged quan-
tities are also streaky inside the turbulent core as, e.g., the wall-
normal vorticity (not shown). For the latter quantity streakiness
was shown earlier for ensemble-averaged spots in incompressible
boundary layer flow by Schröder and Kompenhans (2004). The
dominant streaks outside the calmed region are a result of the
averaging procedure, while a single realisation of the turbulent
spot shows a more chaotic pattern. Despite the averaging proce-
dure the streamwise and spanwise distributions of cf remain spiky.

The core region of the spot may be related to fully turbulent
boundary layers. In order to provide a comparison, representative
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Table 2
Reynolds numbers and grid spacings in wall units of the turbulent spot core

xa1 xa2 ya us usRe/mw Red11;t Red2 ;t Dx+ Dy+ Dzþw

A1 116.5 141.6 7.81 0.0531 30.98 890 420 7.08 6.05 0.760
A2 84.9 114.9 6.84 0.0531 58.08 1500 780 6.44 5.67 0.707
B1 241.8 275.4 9.21 0.0634 12.93 7680 360 2.90 2.38 0.320
B2 156.9 176.8 6.81 0.0567 20.74 7870 580 2.29 2.02 0.252
C 181.0 204.4 2.73 0.0308 93.07 4850 1140 19.8 16.94 2.26
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profiles are determined by additional local averaging over a rectan-
gular domain [xa1,xa2] � [�ya,ya] within the spot core (see Table 2).
From these profiles, the friction velocity us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=qw

p
and the wall

reference length mw/(usRe) are determined where mw ¼ m�w=m�1 is the
(non-dimensional) viscosity, sw the shear stress and qw the density
at the wall, respectively (Table 2). The quantities z+ = uszRe/mw and
u+ = u/us measured in wall units are introduced and the velocity
profiles are shown in Fig. 10 incorporating van Driest’s transforma-
tion uþVD ¼

R uþ

0

ffiffiffiffiffiffiffiffiffiffiffiffi
q=qw

p
duþ. As found by Singer (1996) and Krishnan
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and Sandham (2006b), the region characterised by the log-law is
only partially developed at this stage of transition. This is not
only attributed to the non-homogeneous flow field but also to
the generally low Reynolds number. The Reynolds numbers based
on the local displacement thickness, Red11;t , and local momen-
tum thickness, Red2;t , of the turbulent core at t = 228 are listed in
Table 2.

The distance between the spanwise streaks at the tail (Fig. 1)
amounts to approximately 80 wall units, as found for turbulent
spots in incompressible boundary layers (Riley and Gad-el-Hak,
1985). This is only slightly below the commonly quoted spacing
of the streaks in the viscous sublayer of fully developed wall tur-
bulence. The streaks in the front region visible in the cf values
have a larger spacing. The grid resolutions in our local wall units
are also given in Table 2. Dx+ and Dy+ denote the equidistant
spacings in x and y direction, Dzþw the wall-normal spacing of
the point closest to the wall. These resolutions are similar to
those of Krishnan and Sandham (2006a) for turbulent spots and
of Pirozzoli et al. (2004, and references therein) for fully turbulent
boundary layers.

4. Higher Mach and Reynolds numbers

We now turn to supersonic boundary layer flows at M = 5. Also,
Reynolds number effects are considered at both Mach numbers:
cases A1 and B1 are complemented by the corresponding cases
A2 and B2 at higher Reynolds numbers. Furthermore, we investi-
gate the effect of wall cooling at M = 5 (case C). Table 1 summarises
the respective flow and simulation parameters. Apart from case A1,
we apply a spanwise-symmetry condition at the mid-plane y = Ly/2
in all cases and simulate only a single realisation (without super-
imposed noise). On the one hand, this suppresses any potentially
asymmetric flow structures. On the other hand, the saved compu-
tational effort can be invested into a larger box size and/or higher
resolution to investigate other spot features of particular interest,
e.g., the near-field. Experiments and simulations with broken sym-
metry (such as case A1 in the present contribution or Levin and
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Fig. 11. Iso-surfaces of k2 = �10�5 coloured with velocity magnitude, M = 1.1, Re = 1500
Henningson (2007)) indicate that turbulent spots are likely to de-
velop naturally in a quite symmetric manner.

The transonic flow case A2 with increased Reynolds number at
the triggering position (Fig. 11) shows a similar principal spot
structure as the lower Reynolds number case A1 (Fig. 3). In partic-
ular the vortices at the tip and the structures at the wingtips and
the tail look similar. The turbulent structures in the core become
finer for the higher Reynolds number due to reduced viscous
damping and the streaks at the tail become less dominant. The
higher Reynolds number at the triggering position leads to an en-
hanced growth of the spot and results in a larger extent of the spot
at an earlier time compared to the lower Reynolds number case
(see also Section 5). A similar result is found for spots in the
high-supersonic regime which will be discussed below. It is sup-
posed that the additional noise in the initial disturbance of case
A1 does not impair the comparability between the different cases.

Straightforward comparisons of results at different Mach num-
bers are difficult with respect to Reynolds number effects. The
transitional process is supposed to be dominated by different phys-
ical phenomena which are characterised by their specific Reynolds
number. The critical Reynolds number for linear instability is
attributed to play some role in the transitional process (For critical
Reynolds numbers at different Mach numbers see Mack (1969)).
The Reynolds numbers Red2 and Reh are significant for fully turbu-
lent boundary layers and also assumed to be relevant here. Due to
the properties of the laminar boundary layer these different Rey-
nolds numbers cannot be kept constant for a changing Mach num-
ber. Thus, for the present investigation, the Reynolds number was
chosen heuristically to provide a similar development of the dis-
turbance. It always refers to a triggering position within the line-
arly unstable domain. Table 1 includes values of the various
Reynolds numbers. A similar problem of comparability arises with
providing the same strength of the triggering (Eq. (1b)). The size of
the initial vortex pair disturbance could be related as well to a ref-
erence scale other than the displacement thickness employed.

Overall the turbulent spots at M = 5 (Figs. 12 and 13) show the
typical features already observed in the transonic boundary layer.
(case A2), t = 185. Bottom-view (top), side view (middle) and top view (bottom).
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Unlike in the transonic case, at M = 5 below the spot dominant
spanwise structures close to the wall are present during the whole
spot formation process. Spanwise structures were also observed by
Krishnan and Sandham (2006a) in their M = 6 case. For the final
stage of case B1, t = 228, starting from the tip of the turbulent spot
these spanwise-directed structures are present and decrease in
magnitude toward the centre of the spot (Fig. 12, bottom and side
view). From the centre to the tail spanwise-directed structures are
not dominant anymore. Our simulation at higher Reynolds num-
ber, case B2, shows a very similar phenomenon (see bottom view
of Fig. 13). The spanwise-directed structures are larger and more
ordered compared to the typical hairpin vortices (visible in the
top views) which are located farther away from the wall above
them. Their streamwise propagation velocity is slightly smaller
than the freestream velocity. The semi-circular structures in the
near-field, which will be discussed in Section 7, propagate faster
than the spanwise structures in the spot region. We consider the
occurrence of spanwise structures as a purely transitional phe-
nomenon. The region from the tip to the centre of the spot where
they appear is the region where the local transition process takes
place. As far as we are aware published investigations of fully
developed compressible turbulent boundary layers and of wave-
induced transition do not indicate any dominance of large-scale
spanwise structures.

In order to investigate the effect of the wall temperature, an
additional simulation (case C) was performed with a cooled wall
in which the wall temperature was set equal to the freestream
temperature. The corresponding iso-surfaces of k2 (Fig. 14) show
a quite different spot shape compared to the adiabatic wall case
(Figs. 12 and 13). The spot is highly elongated with a dominant tail.
The dominant spanwise structures in the front region of the spots
found for cases B1 and B2 are hardly detectable here. Rather, span-
wise structures interact with the streamwise structures in the tail
region. In the near-field again semi-circular structures are present.

As for case A1, profiles averaged over a small rectangular sub-
domain within the spot core have been obtained. Naturally, the
choice of the subdomain significantly influences the resulting
average values, which therefore are valid only locally. While for
case A1 averaging was based in addition on 40 samples, in the
other cases only one realisation of the turbulent spot was avail-
able. Note that Krishnan and Sandham (2006b) analysed a further
developed turbulent spot at M = 2. Thus their average values from
the core region should be statistically more significant and less
sensitive to the choice of the averaging domain. The logarithmic
profile is also only partially developed in all these other cases
(Fig. 10). Note that the standard log-law is well established for
adiabatic boundary layers, while for cooled walls a modified addi-
tive constant applies (Maeder, 2000, and references therein). As
already mentioned for case A1, the grid resolutions in wall units
for case A2 are similar to those of turbulent spot and fully devel-
oped turbulent boundary layer simulations in the literature. The
grid spacings of cases B1 and B2 are rather small compared to
those commonly used for fully turbulent flow (Pirozzoli et al.,
2004). For case C the grid spacings are approximately twice those
for fully developed turbulent boundary layers with strong wall
cooling by Maeder (2000).

5. Spot growth and Reynolds number dependence

Early experiments (see Riley and Gad-el-Hak (1985)) report a
self-similarity of turbulent spots based on a linear growth of the
spot size which is quantified by its constant spreading half-angle.
As already mentioned, Fischer (1972) reported a reduction of the
growth rate with increasing Mach number. Fig. 15 shows the loca-
tion of the front, tail and lateral spot edges (defined by jxzj = 0.1) as
a function of time. Lateral spreading half-angles, shown in Table 3,
are estimated from our spot simulations and are defined as arc-
tan(Dyla/Dxc) where the centre of the spot xc is the average be-
tween the leading edge and trailing edge position and yla is the
lateral edge position. The growth is measured by linear regression
between t = 150 and the final stage of the simulations. The trend of
decreasing spreading half-angles with increasing Mach number is
confirmed. However, the Reynolds number at the triggering posi-
tion also has a strong influence on the observed spreading half-an-
gle, which increases with Reynolds number. Also the nonlinear
spot growth in the late stages of development indicates different
spreading characteristics with the downstream-increasing Rey-
nolds number. The Reynolds number effect is known from parallel
(fixed Reynolds number) flows such as plane Couette flow (Lund-
bladh and Johansson, 1991). For boundary layers, where the Rey-
nolds number is continuously increasing in downstream
direction, Singer (1996) found an increase of the spreading half-an-
gle with rising Reynolds number. His evaluation of earlier experi-
ments indicated some Reynolds number dependence of the spot
development. However, Singer (1996) noted that his Reynolds
number based on the distance from the triggering position to the
location of the finally developed spot of his simulation was too
low for a direct comparison with these experimental references.
In our study for all cases the time span of spot development is also
rather short.

At the latest stages of spot development of cases A1 and A2 the
computational domain is largely occupied by the spot and there-
fore the growth should be influenced by the boundaries, respec-
tively the spanwise-periodic neighbours. While for case C the
length of the box is also exhausted, for cases B1 and B2 more space
is left.

Compared to the present ones, very long developed turbulent
spots have the distinctive property of a large wall-normal extent
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compared to the thickness of the surrounding laminar boundary
layer. It is expected that at a stage of spot development much later
than in our cases the Reynolds number effect diminishes and the
spreading is primarily affected by the Mach number.
6. Spreading of disturbances

In the following, we attempt to give some explanation for the
different nature of the turbulent spots at M = 5 for the adiabatic
and cooled wall cases by means of linear stability theory. Com-
pressible boundary layers show several distinct linear stability
properties which were comprehensively investigated and re-
viewed by Mack (1984). Some of these properties are: If an
inflexion point (U0/T)0(zc) = 0 exists such that U(zc) > 1 � 1/M
inviscidly unstable eigenmodes are present (generalised inflexion
point criterion), where z = zc denotes the critical layer. This ren-
ders adiabatic boundary layers inviscidly unstable. For the
M = 1.1 case the least stable mode is a viscous one similar to a
Tollmien–Schlichting wave (viscous instabilities are characterised
by a growth rate which has its maximum at a finite Reynolds
number). At M = 5.0 an additional unstable second mode is pres-
ent. This two-dimensional higher mode shows the largest growth
rate and all instabilities are of inviscid nature. Fig. 16 shows the
complex frequency x = xr + ixi in dependence on the stream-
wise wavenumber a for the first and second-mode instability
(see also Appendix A). Cooling of the wall damps the first but
amplifies the higher inviscid modes (Mack, 1987). For strong
cooling (M = 5, Tw = T1, case C) no unstable first mode exists
anymore because of the absence of a generalised inflexion point.
Instead, the second-mode is unstable over a wide wavenumber
range, respectively, it merges with other higher modes
(Fig. 16). Also neutral modes exist which will be discussed in
the next section.
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Table 3
Spot spreading half-angles arctan(Dyla/Dxc)

A1 A2 B1 B2 C

5.5� 9.0� 3.0� 5.6� 1.7�

A. Jocksch, L. Kleiser / International Journal of Heat and Fluid Flow 29 (2008) 1543–1557 1553
The growth of localised disturbances for the linear instability
modes in the limit t ?1 can be determined with the saddle-point
method (see van Saarlos (2003)). We focus on the two-dimensional
case specified by the dispersion relation x(a). The linear unstable
system responds to an pulse initial disturbance with a growing
wave packet. Constant growth rates of Im(ax �xt) are found on
rays of constant group velocity ox/oa = x/t (Im(ox/oa) = 0,o2x/
oa2 – 0) present in the asymptotic limit. Thus, the wavenumber
in the packet changes depending on the location (associated with
a specific velocity). While the packet presents the location of rays
with positive growth rates, decaying waves neighbouring the pack-
et are present which propagate faster and slower than the packet,
respectively. The velocity of the waves is limited by the so-called
caustic o2x/oa2 = 0. Since in our case multiple unstable eigen-
modes are present also several wave packets originate from the
initial disturbance. Different packets may dominate on different
rays x/t. We focus on the evaluation of the velocity of rays with
zero growth which describe the edges of wave packets.

For a real long-time development the Reynolds number tends to
infinity. For the compressible boundary layers under consideration
the presence of instabilities in the inviscid limit makes our prob-
lem well suited for the consideration of disturbances in the limit
t ?1. This holds especially for the M = 5 cases where the inviscid
limit is a reasonable approximation of the stability properties in
the Reynolds number range investigated.

For the adiabatic boundary layer at M = 5 (cases B1 and B2) the
unstable modes 1 and 2 are considered. The propagation velocities
of the wave packet boundaries are listed in Table 4. Considering the
leading edge, the second-mode instability moves slightly faster
than the first-mode instability. In principle, the region of distur-
bance propagation is surrounded by caustics for every mode.

For the cooled wall the velocity of the corresponding wave
packet’s leading edge is slightly slower than for the wave packets
of the adiabatic wall (Table 4). At the trailing edge the wave packet
has special properties. In the range investigated (a 6 20), with
increasing wavenumber the amplification rate xi of the instability
mode decays toward zero monotonically (Fig. 16) similarly as
shown for the parameters Tw/Tr = 0.25, M = 5.8 by Mack (1987).
Simultaneously xr becomes linearly growing in dependence on a.
Thus, the trailing edge of the wave packet consists of infinitely
high-wavenumbers a ?1. Its group velocity lima?1ox/oa is rel-
atively low compared to the trailing edge velocity of the wavepac-
kets for the adiabatic case (Table 4).

The connection between the non-linear spreading of turbulent
spots and the spreading of disturbances according to linear theory
has been considered in the literature in the context of front prop-
agation (van Saarlos, 2003). Fronts of chaotic motion spreading
into undisturbed areas are classified in the limit of t ?1 as fol-
lows. If the chaotic (turbulent) region spreads faster than the fast-
est ray of small disturbances with zero growth rate the front is said
to be pushed. If the velocity equals the velocity corresponding to
zero growth rate, it is called pulled. The underlying assumption
is that growing disturbances become non-linear and turbulent be-
cause of their large amplitudes. The comparison of two-dimen-
sional linear spreading considered here with the turbulent spot
growth is justified in the limit of large developed turbulent spots
with a radius of the spot border curvature which is large compared
to the wavelength of the considered linear instabilities.

In the following, we assume that the temporal development of
cases B2 and C has proceeded long enough to be well approximated
asymptotically. The leading edge of the spots (Fig. 15), as well as
the hairpins at the tips, propagate approximately with freestream
velocity, i.e. faster than linear instabilities spread and, hence, the
fronts are pushed. Certainly, in the spanwise direction the fronts
are also pushed since there are no linear instabilities. We do not
exclude the possibility that the oblique spreading at the wingtips
is in some way associated with the spreading of linear instabilities.
Also the necessary assumptions for the comparison between wave
packets and turbulent spot are only roughly satisfied. Thus, the
existence of linear waves on the wingtips (Wygnanski et al.,
1979) is not excluded.

For the cooled case, the large velocity difference of the wave
packet edges seems to be connected with the fast development
of long streamwise structures of the turbulent spot. The slow tail
is slightly faster than the trailing edge velocity of the two-dimen-
sional wave packet, while for the adiabatic case it is significantly
slower than the trailing edge of any wave packets. If we consider
the tail velocity of the iso-contours of k2 (Fig. 14), for the cooled
case it comes close to the trailing edge velocity of the two-dimen-
sional wave packet: the front is pulled. For the adiabatic case, it is
pushed. The spanwise structures at the tail of the spot might also
be associated with linear theory according to which slowly propa-
gating two-dimensional disturbances exist. The continuously
changing streamwise wavelength of the spanwise structures con-
nected with different velocities in dependence on the wavelength
seems to be a phenomenon similar to the changing wavelength
within a wave packet according to linear theory. Low-wavenumber



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

ωr

α

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  0.5  1  1.5  2  2.5  3

ωi

α

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.5  1  1.5  2  2.5  3

 6.2

 6.4

 19.5  20

ωr

α

 0.5  1  1.5  2  2.5  3
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 19.5  20

ωi

α

Fig. 16. Dispersion relation x(a), unstable modes for M = 5, inviscid flow, adiabatic wall (left) and cooled wall (right).

Table 4
Borders of growing wave packets: leading edge velocity ule and trailing edge velocity
ute, M = 5, inviscid asymptotic analysis

ule ute

Adiabatic wall, mode 1 0.95 0.83
Adiabatic wall, mode 2 0.96 0.54
Cooled wall 0.89 0.23
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structures propagate further downstream, while high-wavenum-
ber structures follow at the slow tail (Fig. 14).

7. Near-field of turbulent spots

We now focus on the near-field of the turbulent spots. Fig. 17
shows the pressure distribution in the symmetry plane and at
the wall for case A2. The core region of the turbulent spot shows
relatively high pressure oscillations. The calmed region of the spot
is associated with low pressure, whereas further downstream a re-
gion of high and another of low pressure follow. The turbulent spot
is surrounded by small pressure fluctuations. For case B2 the pres-
sure distribution is visualised in Fig. 18, demonstrating again high
fluctuations in the spot core region. Also small pressure distur-
bances are present in the near-field of the turbulent spot and the
calmed region is associated with low pressure. This region is
bounded by an expansion wave from near the wall close to the in-
flow boundary which continues toward the upper computational
boundary at approximately the Mach angle. Waves emanating
from the trailing edge of turbulent spots were also observed on a
cone (see Fig. 1 in Schneider (2004)). The corresponding low Rey-
nolds number cases A1 and B1 have a qualitatively very similar
pressure distribution (not shown).

We try to distinguish between two categories of disturbances
in the near-field according to their origin. The first one is created
directly by the initial disturbance which does not only lead to
the localised laminar-turbulent breakdown into a turbulent spot
but also persists as small fluctuations in its near-field. The sec-
ond one is created by the turbulent fluctuations which are pres-
ent beginning at some later stage of spot formation and are thus
created indirectly by the initial disturbance. The turbulent spot,
as any turbulence, radiates noise into its near-field. The distur-
bances farthest away from the spot are determined directly by
the initial disturbance. Disturbances close to the spot are af-
fected by the radiation from the turbulent region. These catego-
ries are considered separately each for the freestream and the
boundary layer region.

For the freestream, the near-field can be described as follows.
For the transonic boundary layer (case A2), dominant spherical
waves generated from the initial disturbance leave the limited
computational domain at an early stage (not shown). The weak-
er spherical disturbances present in the near-field later (t = 185,
Fig. 17) are supposed to have their origin in the turbulent region.
In case B2, all essential disturbances originating directly from
the initial condition are still present in the computational do-
main at the latest stage of the simulation (t = 207, Fig. 18). This
is due to the smaller ratio between the propagation velocity of
acoustic waves and the flow velocity (see also later in this sec-
tion). Also spherical waves are present in the freestream.
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The nature of disturbances present within the boundary layer
differs from that of the freestream. This becomes apparent, e.g.,
by the fact that the spherical waves in the freestream of case B2
(Fig. 18) do not extend unaltered into the boundary layer. Also
the disturbances within the boundary layer are visible as iso-sur-
faces of k2 (Figs. 11 and 13). Their characteristic pattern becomes
apparent in the wall pressure distribution shown in Fig. 18 for case
B2. The pressure maxima (not minima) in the boundary layer lead-
ing the spot are clearly visible as semi-circular structures in the k2

visualisation (Fig. 13). (Note that the k2 criterion for vortex detec-
tion was originally derived for incompressible flow. Iso-surfaces of
k2 are used here equally for three-dimensional flow structure visu-
alisations at high Mach number. However, the detected structures
do not necessarily enclose pressure minima.)

A very similar semi-circular pattern around the front region of
the turbulent spot appears at the early stage of development of
the transonic cases (shown for A1 in Fig. 3, t = 59). It leaves the do-
main soon after spot triggering before the spot has finally devel-
oped (case A1, t = 228 and case A2, t = 185). At this final stage
significant disturbances in the near-field close to the turbulent re-
gion are present which are supposed to have their origin in the tur-
bulent region. They are more irregular than the patterns of the
early stage (Fig. 3) and those at M = 5 (Figs. 12 and 13). Comparing
the final stages of cases A1 and A2, the structures in the near-field
of the turbulent spot appear to be more dominant for the high Rey-
nolds number simulation (Fig. 11) than for the low Reynolds num-
ber one (Fig. 3) at the chosen k2 iso-value. Slowly propagating
waves originating from the initial disturbance with very low veloc-
ity could still be present close to the turbulent region. However, we
find no indication that such waves exist or play any role in the
transonic boundary layer investigated.

While in the outer region of the pattern of case B2 (Fig. 13) the
structures are clearly generated by the initial condition they seem
also to be driven by the developed spot despite their very regular
appearance. At the wingtips new small oblique structures appear
during the whole development. The propagation velocity of the
wave pattern in the near-field is higher than the one of the span-
wise structures on the bottom of the turbulent region (Section 4).
At the same time stage the pattern of case B1 (not shown) has a
similar shape and strength as the one of case B2 (Fig. 13). At its fi-
nal development (Fig. 12) it appears weaker than at earlier stages.
Note that the waves originating from periodic neighbours of the
spot interact with each other and create interference patterns
(see Figs. 11 and 12).

It appears reasonable to consider small disturbances of the
near-field within the boundary layer with respect to the linear sta-
bility properties of the undisturbed laminar flow. In the freestream,
small disturbances propagate according to classical acoustics.
Accordingly, besides the unstable modes already discussed, neutral
modes are present in compressible boundary layers (inviscid
theory).

We now focus on the ordered wave pattern of case B2. The asso-
ciation of the wave phenomenon with a single wavenumber of a
linear eigenmode is only possible in an approximate sense since
its nature is not two-dimensional and not periodic. We do not con-
sider the spanwise modulation but only the pure streamwise com-
ponent of the disturbance in the symmetry plane. The regularity of
the streamwise oscillations suggests the dominance of a single
wavenumber. The semi-circular pattern propagates downstream
with a velocity between U1 and U1(1 + 1/M). We do not observe
any dispersion effects and thus no distinction between group and
phase velocity c is made in the following.

Since the streamwise propagation velocity of the wave pattern
is higher than the freestream velocity the association with an
unstable mode appears impossible since, to our knowledge, there
are no such fast instabilities. We are also not aware of slightly
damped waves of this spreading velocity. Thus only neutral modes
remain as possible candidates. Neutral modes of that velocity are
so-called subsonic modes according to their velocity with respect
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to the freestream. It is known that if they are present they appear
for infinitely many discrete values of the wavenumber a at fixed c
(Mack, 1984). In our case a single wavenumber is dominant. The
patterns in the near-field of the transonic and the cooled wall
boundary layer spots (cases A1, A2 and C) also propagate with a
high velocity. One might assume that the phenomenon is also asso-
ciated with a neutral mode. It is especially apparent for case C that
the pattern in the near-field possesses a streamwise changing
wavelength. (The boundary layer thickness changes more slowly
than this wavelength.)

Another phenomenon of the near-field is the vortex system at
the tail of the turbulent spots. In the k2 visualisations of cases A1
(Fig. 3), A2 (Fig. 11), B1 (Fig. 12) and B2 (Fig. 13) structures of ob-
lique orientation with respect to the flow direction connected with
the spot are present. They look somewhat similar to the stationary
waves trailing turbulent spots observed in the wind-tunnel exper-
iment by Chambers and Thomas (1983).
8. Conclusions

Spatial simulations of isolated turbulent spots growing in zero
pressure gradient supersonic, adiabatic boundary layers on a flat
plate were performed at Mach numbers M of 1.1 (cases A1 and
A2) and 5 (cases B1 and B2) at two different Reynolds numbers.
The turbulent spots show typical properties known from the liter-
ature in the incompressible case. These are, e.g., the arrowhead-
like shape of the spot with the downstream overhang region and
streaks in the tail region. The turbulent core of the spots shows a
trend toward the logarithmic mean flow profile of fully turbulent
boundary layers. At high Mach numbers, besides structures known
from the incompressible case, additional spanwise structures
appear in the front region close to the wall similarly as already
observed by Krishnan and Sandham (2006a). The investigation of
a cooled wall (case C) at M = 5 revealed a highly elongated turbu-
lent spot with a multitude of spanwise vortical structures at its tail
in addition to streamwise-elongated structures.

For adiabatic boundary layers, the turbulent spots show some
reduction of the lateral spreading with increasing Mach number
as discussed by Fischer (1972). However, within our investigated
parameter range the spot growth is also Reynolds number depen-
dent, a factor which cannot be separated from Mach number
effects.

For M = 5 linear stability theory predicts inviscidly unstable
modes for which the spreading of wave packets in the limit
t ?1 has been considered. The leading edge of streamwise prop-
agating packets is slightly slower than the turbulent spot front.
While in the adiabatic case the trailing edge of the wave packets
is significantly faster than the tail of the spot, for strong wall cool-
ing the trailing edge velocities of the wave packet and the turbu-
lent spot are approximately equal, and are very low compared to
the adiabatic case trailing edge of the turbulent spot. Thus we sup-
pose that the large streamwise elongation of the cooled case spot is
associated with the linear stability properties of the boundary
layer.

The initial disturbance triggers waves propagating into the
near-field. After the laminar-turbulent breakdown the turbulent
core of the spot grows while the surrounding small disturbances
spread further. It was shown for all investigated Mach and Rey-
nolds numbers that certain small disturbances spread faster than
the turbulent spot develops. Thus, the core of the spot radiates
small disturbances into the surrounding laminar environment.
Within the boundary layer they form characteristic semi-circular
wave patterns. These waves are supposed to be an effect of com-
pressibility. For M = 5 a so-called subsonic neutral mode according
to the inviscid linear stability theory (Mack, 1984) apparently plays
a central role in the formation of the near-field pattern. For our
compressible flow simulations, we do not see a necessary connec-
tion of these waves in the near-field of turbulent spots with waves
discussed previously in the literature that are associated with tur-
bulent spots in incompressible boundary layers.
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Appendix A. Linear stability

The dispersion relation x(a) of linear eigensolutions for two-
dimensional inviscid parallel flow has been determined by solving
the equation system for the complex amplitude functions p̂ðzÞ and
aŵ(z) of the pressure and wall-normal velocity, respectively (Mack,
1987),

ŵz �
Uzŵ

U � c
¼ ip̂

cM2

T �M2ðU � cÞ2
h i

U � c
ðA:1aÞ

p̂z

cM2 ¼ �
ia2

T
ðU � cÞŵ ðA:1bÞ

with the boundary conditions ŵð0Þ ¼ limz!1ŵðzÞ ¼ 0, p̂zð0Þ ¼
limz!1p̂zðzÞ ¼ 0, ()z denoting the derivative with respect to z.
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